葉雲嫣有些擔心落寒,要知道有時候,天才和瘋子也隻有一線之隔。</p>
像梵高,貝多芬等等,還有許多名人,哪一個不是那個時代驚才豔豔的人物。</p>
最後的結果都是令人扼腕的!</p>
最令人可惜的就是牛頓,他是一個有神論者,他一生都在試圖用科學來尋找神。</p>
牛頓對其神學信仰及思想發展脈絡也做出了超乎尋常的貢獻。</p>
到了晚年,牛頓逐漸開始疏遠給他帶來巨大成就的科學。</p>
他不時表示出對以他爲代表的領域的厭惡。</p>
同時,他的大量的時間花費在煉金術上,可能和中國古代帝王一樣,在祈求長生。</p>
在他死後,人們在牛頓身體内發現了大量水銀,可能是他研究煉金術所導緻的。</p>
而汞中毒,也可能解釋牛頓晚年的一些怪異行徑,</p>
葉雲嫣不一樣落寒最後有這樣的下場,她繼續和落寒聊着:</p>
“阿濤,你爲什麽這麽着急,能和我說說你的夢想麽?”</p>
葉雲嫣一直都是看到落寒在努力學習各種知識,卻不知道他到底想要什麽。</p>
落寒看着黑漆漆的天空,把葉雲嫣重新摟在懷裏說道:</p>
“看到這片天空了麽,他限制了人類文明的發展,我想走出去看看外面的世界。”</p>
葉雲嫣有些不懂落寒的意思,他是想當宇航員麽?</p>
落寒看着葉雲嫣懵懂的眼神,落寒想到,有時候無知也是一種幸福啊!</p>
沒有系統,不知道外面更廣闊的天地,落寒根本就不會知道外面的世界種族林立,各種文明蓬勃發展。</p>
落寒也就不會有想要出去見識一番宇宙浩瀚的野心</p>
對這樣的宇宙,恐怕任何知道的人,心裏都會有種想要去見識一下的心思。</p>
但落寒有的更多的是危機感,從亮亮那得知的消息,落寒就知道宇宙那是個擁有殘酷現實的地方。</p>
弱肉強食這一個詞,就已經足夠讓落寒對别的文明保持敬畏之心。</p>
高級文明奴役低等文明似乎是應當應分的,一旦你技不如人那你将沒有任何話語權。</p>
以地球現在的發展水平,就是來個一級文明恐怕都無力反抗。</p>
至于最後地球上的人類是變爲奴隸,任由别的文明買賣,還是成爲一些口味特殊文明餐桌上的食物就不得而知了。</p>
恐怕最好的選擇就是上戰場當炮灰了。</p>
唯一值得慶幸的是,地球處于銀河系邊緣地帶,那些高級文明有很大概率不會開這種貧瘠偏遠的地方。</p>
可人類不能總是将自己的未來寄托于僥幸上面。</p>
落寒希望在自己的有生之年能多做一些。</p>
看着落寒說了一句話,又陷入到自己的思維裏,葉雲嫣十分無奈:</p>
“阿濤,阿濤,你又走神了!”</p>
“對不起!”</p>
“沒事,阿濤我覺得你不能每天除了研究就是做題的,你需要找個愛好,釋放一下壓力,你給自己的壓力太大了。”</p>
落寒沖葉雲嫣笑了笑說道:“放心吧,我沒事,跟你說說話好多了!”</p>
确實,落寒把心裏話和葉雲嫣說完後好受了很多。</p>
落寒擔心的那些事以他現在能力也解決不了,還是做好當下的事情比較重要。</p>
不去想亂起八糟的事,落寒對着葉雲嫣壞壞一笑:“不管那些事了,如此良辰美景,不做點什麽豈不辜負了!”</p>
落寒說完,還沒等葉雲嫣反應過來,右手移到葉雲嫣後腦,對着葉雲嫣那張櫻桃小嘴直接親了下去,</p>
“唔……”</p>
葉雲嫣的驚呼直接被落寒吞入腹中。</p>
在葉雲嫣的開導下,落寒也發現了自己的問題,确實有點急功近利,一些沒影的事想的太多了。</p>
落寒滿血複活,但不準備像之前一樣搞個項目就全身心的投入進去。</p>
而是要張弛有度,最近半個月落寒也沒管班級事務,落寒準備盡盡班長的義務,融入到群衆生活中去。</p>
晚上一直開啓的學習空間,落寒也準備關掉一陣,讓大腦休息一陣。</p>
周一上午落寒和室友一起上了一節公共課後,接到了百裏瑾的召喚。</p>
落寒放從食堂轉道百裏瑾辦公室,敲開辦公室門走了進去。</p>
話說開學兩個多月了,落寒也就在剛開學的時候去拜訪了一下,也是好久沒有見百裏瑾和大師兄了。</p>
百裏瑾正帶着老花鏡,坐沙發上看報紙,擡頭掃了落寒一眼說道:</p>
“來的還挺快。”</p>
“嘿嘿,老師召喚我還不得颠颠的趕緊跑過來。”落寒嬉皮笑臉的說道。</p>
“行了,被在這嬉皮笑臉的了,老規矩先做幾道題吧!卷子在桌上自己拿。”</p>
說完百裏瑾就又低頭繼續看報紙了,根本沒有理會落寒的意思。</p>
這什麽情況,我哪惹到老爺子了?</p>
落寒左思右也沒搞明白,隻能拿起卷子低頭做題。</p>
題不多,一共三道。</p>
第一題是幾何題,開題一副圖。</p>
六條直線構成了一個六邊形,内接在圓中。</p>
六邊形與圓内接的六個點,分别标注爲A、B、C、D、E、F。</p>
這幅圖右邊空白處,又有三條直線,三條直線相交于一點爲L。</p>
題目:根據左邊的這個圖案,将右邊的圖案補充完全。</p>
“我去,這不就是平常找規律的題麽?”落寒吐槽了一下</p>
找規律的題幾乎是,從小學一年級到國家公務員考試都會出現,覆蓋面極其廣闊,區别隻在難易程度。</p>
不過下一秒落寒就把這個想法抛出腦海,落寒自嘲道:</p>
“老師怎麽可能搞個小學生的邏輯題來考我?”</p>
落寒放棄了稿紙上随手畫出的答案,繼續看圖分析。</p>
落寒在稿紙上寫寫畫畫,嘴裏嘀咕道:“果然有問題,差點就着道了,姜還是老的辣啊!”</p>
落寒看出點名堂,延長六邊形AB、DE兩條邊,使它們相交于M點。</p>
繼續延長BC、EF,使它們相交于Z點。</p>
延長CD、AF使它們相交于X點。</p>
落寒用直尺比劃了一下,連接M、Z、X三點,他發現M、Z、X三點在同一直線上。</p>
“我去,這是帕斯卡定理?”</p>
“啧啧,藏的真深。”</p>
“所以右邊的圖要符合映射幾何?”</p>
落寒準備畫了上去,但又覺得以百裏瑾出題的水平,自己是不是發現的太快了。</p>
落寒就繼續考慮其他幾何,當然第一個想到的就是目前的新幾何,也就是視覺幾何,包含了羅氏幾何和黎曼幾何。</p>
但是現在問題來了,剛剛通過帕斯卡定理得出的映射幾何是歐幾裏得幾何的補充,二者相輔相成。</p>
而新幾何又和歐幾裏得幾何相沖,簡單來說就是新幾何認爲兩條平行線一直延伸下去一定會相交,而後者認爲不可相交。</p>
新幾何也叫視覺幾何是最近二百年才發展起來的,對于老百姓來說平行線延伸出去,相不相交和他們關系不大。</p>
就像兩條鐵軌,大部分人還是以自己的觸覺爲主,所以歐幾裏得幾何又叫觸覺幾何。</p>
到底是根據歐幾裏得幾何意義來作答呢,還是新幾何的意義來作答,落寒一時間有點那不定主意了。</p>
兩百年前德紮格掀翻幾何屆歐幾裏得的通知,随後奈何羅巴切夫斯基抛出雙曲幾何登基稱帝,以視歐幾裏得正統。</p>
黎曼大師就如西門吹雪一般,一個黎曼幾何斬出很掃天下,淡淡的看着衆人,說這他媽都是狗屁。</p>
此時此刻落寒對百裏瑾的崇敬之情達到了頂點。</p>
兩百餘年間幾何屆的你争我奪,數不清的刀槍劍影在這小孩巴掌大小的圖中體現的淋漓盡緻。</p>
落寒不佩服都不行,老師傅就是老師傅,行家一出手就知有沒有。</p>
将遇良才棋逢對手,落寒身體裏的每一個細胞都開始興奮起來了。</p>
他準備調動所以的腦細胞全力攻克這道題,解決百年間的恩怨情仇,反正百裏瑾并沒有限制做題時間。</p>
然而落寒的胃很是不争氣。</p>
“咕咕咕”</p>
百裏瑾聽到後,看了眼落寒說道:“還沒吃午飯吧,我也沒吃,你想吃什麽,我去買,今天就在這吃了。”</p>
落寒目前全部的注意力都被題目吸引去了,說了聲“随便”就繼續低頭看題。</p>
百裏瑾看着落寒的樣子,露出了一抹神秘的笑容,拿起桌上的教師卡,開心的走了出去。</p>
落寒獨自一人在房間寫寫畫畫,畫出一個答案,否定一個。</p>
再畫一個,在否定一個。</p>
不對!</p>
不對!</p>
全是謬論!</p>
落寒在房間走來走去,陷入了沉思。</p>
他考慮到既然幾何的方向走不通,不如考慮一下百裏瑾出題的意義,從這方面下手。</p>
半個小時後百裏瑾回來,給落寒帶了份可樂雞翅飯,他記得自家孫子就喜歡吃這個。</p>
落寒還在想,沒有盲目動手,就被百裏瑾打斷,叫他過來吃飯。</p>
落寒也确實餓了,就沒和百裏瑾客氣,端起飯大口大口的吃了起來。</p>
下午放好也沒課,落寒已經做好了在這耗一下午的準備了。</p>
百裏瑾也沒有任何想要提示落寒的意思,吃完午飯對落寒說道:</p>
“你就在着做題,這房間裏的書都可以看,工具也随便用,我就回去睡個午覺下午再過來。”</p>
說完百裏瑾背着個手施施然的走出了辦公室,頭也不回。</p>
既然新幾何和歐幾裏得幾何不能共存。</p>
落寒覺得把自己能考慮到的答案都畫出來,總會有一個符合百裏教授。</p>
于是落寒換了張紙,開始畫在各種幾何意義下的答案。</p>
在歐幾裏得幾何意義下的,帕斯卡定理,昂雄定理,正好這兩個定理還相互對偶,還有什麽射影定理等等,數不勝數……</p>
搞定了歐幾裏得幾何,落寒開始考慮他老冤家,新幾何下最出名的羅氏幾何,黎曼幾何……諸如此類的。</p>
半個小時後落寒已經換了5張A4紙了,上面密密麻麻趴着各種圖形。</p>
落寒吐了口氣,終于畫完了,接着把答案放到一遍整理好,看下一題。</p>
計算I=∫∫-ydzdx+(z+1)dxdy,其中S爲圓柱面x^2+y^2=4被平面x+z=2和z=0所截部分的外側。</p>
這倒是不難,正常的數分題,當然了這是對落寒來說。</p>
換個大一學生來看這題,可能就是,我是誰,我在哪,我要幹什麽三連問了。</p>
其實這道題對本科生來說已經超越了基礎教育的範疇。</p>
但落寒是誰,他不僅把數學系大一要學的,數分,高代,解幾等這些基礎課程搞定了。</p>
就連後續教育,數分ll,數分III,拓撲學,複變函數,微分方程等高層次課程都自學完成了。</p>
回題目本身,落寒看S的方程爲x^2+y^2=4,并非類似z=z(x,y)的連續函數。</p>
這樣難以求出S所在側的法向量。</p>
“這題用合一投影不好辦啊,所以要用分面投影。”落寒在稿紙上和一些數字符号溝通後,說道。</p>
再次梳理思路後,落寒在試卷上寫出他的解答。</p>
若用分面投影,圓柱面在XOY平面的投影爲一條線,準确的說其實是一圓圈,所以?(z+l)dxdy=0</p>
接下來,落寒開始計算-ydzdx的值?</p>
确定x和z的取值範圍需要作圖,沈奇在稿紙上作了個平面投影圖,最終計算出I=-8π。</p>
好了,第二題搞定,落寒開始征戰第三題。</p>
第三題就是個普通高代題,難度水平差不多和期末考試一樣,落寒根本提不起什麽興趣。</p>
随後一頓操作,在紙上留下一堆鬼畫符,而後放下筆看向百裏瑾。</p>
“寫完了?比我預計的時間要短一些。”百裏瑾也同時看向落寒。</p>
“寫完了就來說說,我們倒着講,第三題不用看,基本的高代題,套公式套定理就行。</p>
第二題,落寒,你說說你的思路?”</p>
落寒組織了一下語言開口道:“y爲圓柱面x平方加y平方等于4關于平面XOZ對稱的奇函數。</p>
我這裏寫的‘S前’是指圓柱面x平方加y平方等于4在y大于0的部分。</p>
所以y等于4減x的平方再開方。”</p>
其實落寒前面的推導計算都是常規套路了,他畫的這個圖才是亮點。</p>
第二類曲面積分的立體圖畫起來挺麻煩的,落寒化繁爲簡,畫出了某一平面的投影,确定了x和z的取值範圍,最終計算出I封于-8π。</p>
</p>