小說王-台灣最大小說網 > 科幻靈異 > 走進不科學 > 第32章 無窮量級的萌芽(下)

第32章 無窮量級的萌芽(下)

第32章 無窮量級的萌芽(下)

屋子裏。

看着一臉懊惱的小牛,徐雲的心中卻不由充滿了感慨:

雖然這位的人品實在拉胯,但他的腦子實在是太頂了!

看看他提到的内容吧:

微積分就不說了,還提到了法向量的概念、勢能的概念、淨力矩的概念以及小形變的假設的假設。

以上這幾個概念有一個算一個,正式被以理論公開,最早都要在1807年之後。

這種150年到200年的思維跨度敢問誰能做到?

誠然。

胡克提出來的問題其實很簡單,簡單到徐雲第一時間想到的解法就接近了二十種,最快捷的方法隻要立個非笛卡爾坐标系上個共變導數就能解決。

但别忘了,徐雲的知識是通過後世學習得到的,那時候的基礎理論已經被歸納的相當完善了。

就像掌握了可控核聚變的時代,閉着眼睛都能搞出個20的發動機。

但小牛呢?

他屬于在鑽木取火的時代,目光卻看到了内燃機的十六烷值計算式那麽離譜!

想到這,徐雲心中莫名有些想笑:

他曾經寫過一本小說,結果别說牛頓了,連麥克斯韋都被一些評論diss成了‘查了一下,不過一個方程組而已’。

随後他深吸一口氣,将心思轉回了現場:

“牛頓先生,您的這個思路我非常認可,但是需要用到的未知數學工具有些多,以目前數學界的研究進度似乎有點乏力.”

小牛點點頭,大方的承認了這一點:

“沒錯,但除此以外,就必須要用到你說的韓立展開了。”

說完小牛繼續低下頭,飛快的又列出了一行式子:

V(r)=V(re)+V’(re)(r-e)+[V’’(re)/2!](r-re)^2+[V’’’(re)/3!](r-re)^3

接着小牛在這行公式下劃了一行線,皺眉道:

“如果使用韓立展開的話,彈球在穩定位置附近的性質又該是什麽?這應該是一個級數,但劃分起來卻又是一個問題。”

徐雲擡頭看了他一眼,說道:

“牛頓先生,如果把穩定位置當成極小值來計算呢?

我們假設有一個數學上的迫近姿态,也就是.無限趨近于0?”

“無限趨近于0?”

不知爲何,小牛的心中忽然冒出了一股有些古怪的情緒,就像是看到莉莎和别人挽着手從卧室裏出來了一樣。

不過很快他便将這股情緒抛之腦後,思索了一番道:

“那不就是割圓法的道理嗎?”

割圓法,也就是計算圓周率的早期思路,上過小學人的應該都知道這種方法。

它其實暗示了這樣一種思想:

兩個量雖然有差距,但隻要能使這個差距無限縮小,就可以認爲兩個量最終将會相等。

割圓法在這個時代已經算是一種被抛棄的數學工具,以徐雲随口就能說出韓立展開的數學造詣,理論上不應該犯這種思想倒退的錯誤。

面對小牛的疑問,徐雲輕輕搖了搖頭,說道:

“牛頓先生,您所說的概念是一個非級數的變量,但如果更近一步,把它理解成一個級數變量呢?

甚至更近一步,把它視爲超脫實數框架的.常量呢?”

“趨近于0,級數變量?常量?”

聽到徐雲這番話,小牛整個人頓時愣住了。

無窮小概念,這是一個讓無數大學摸魚黨挂在過樹上的問題。

一般來說。

一個人從大學生到博士,對于無窮小的認識要經曆三個階段。

第一階段跟第二階段的無窮小都是變量,認識到第三階段的時候,所有的無窮小都變成了常量,并且每個無窮小都對應着一個常數。

這些常數都不在實數的框架裏面,都是由非标準分析模型的公理産生出來的。

第一個階段是上大學學習數學分析或者高等數學的時候的認知,也就是無窮小是要多小有多小。

即正負無窮小的絕對值,小于任意給定的一個正實數。

第二階段是學習非标準分析的時候,很多微積分公式引入了無窮小量,出現了序之類的概念。

第三階段是認識數學模型論的時候,這時無窮小量可以變成常量。

一旦對無窮小量認識到是常量,就會發現存在一個更廣闊的數學世界,這個數學世界比當今已知的數學世界更廣更深更複雜,出現了第二類極限思想及其幾何結構,第二類極限思想是無窮大空間賦予的,标準分析的極限思想是無窮小空間賦予的。

接着便出現了歐式幾何跟非歐式幾何的相容現象,平行交點坐标都可以準确表示出來。

上述情況又衍生出了很多的非常規幾何,它們既不是歐式幾何也不是非歐式幾何,是屬于第三種幾何類型(中式幾何)等等。

而第三階段的對無窮小的認識有什麽實際意義呢?

最直接的說就是,你可以去搞超級計算機了。

目前國内對于第三階段研究最深入的便是中科大,潘建偉院士和陸朝陽教授的量子計算機也是這方便的直觀表現之一。

參加過超級計算機算法研發面試的朋友應該都知道,無窮小的三階認知是面試的必考題。

此時小牛的理論知識雖然沒有那麽完善,但作爲微積分——特别是無窮小概念的提出者與奠基人,他隐約能對這些信息作出反饋。

随後徐雲拿過筆,繼續寫道:

假設一次項系數在平衡位置處爲零,那麽最小隻能保留到二次近似,自然就得到了勢能與平衡偏離量二次相關的形式:

V(r)≈[V’’(re)/2!](r-re)^2

V(r)≈k/2(r-re)^2。

寫到這兒。

徐雲便停下了筆,看了眼有些出神的小牛,悄然轉身離去。

出門前,他從桌上拿了一小包白糖、一點鹽、小半勺黃油、一口閑置不用的坩埚和兩顆土豆——前幾者都是早晚餐常用的調料,後兩者則是應急用的儲備糧。

然後踮着腳尖,輕輕的掩上了門。

小牛對此毫無表示,他就這樣呆呆的看着徐雲的公式,尤其是那個約等号。

過了幾分鍾。

他的喉結忽然上下滑動了幾下,嘴中發出了幾道咕噜咕噜的聲音。

片刻後,他一個箭步竄回座位,飛快的動起了筆。

三個小時後。

隻聽哐的一聲,小牛奪門而出。

嗯,物理意義上的奪門而出——他把門給撞了下來,直接拎在了手上。

沒辦法,房子實在是太老了。

此時正值晚上八點多,因此小牛第一眼便看到了不遠處的一簇火光,以及火光映照下徐雲的臉龐。

小牛快步走到他身邊,激動的道:

“肥魚,我算出來了,那是随距離線性變化的力,一個彈性力!

它的具體形式沒有任何要求,換句話說,任何體系在穩态附近,都會表現出彈性行爲!

這是一個沒被人發現的公式,一個穩态下的定理,我敢打賭,胡克他自己都沒推導出來,因爲他給的函數居然有0階項!”

小牛一邊跑一邊朝徐雲囔囔,當他來到火堆邊上時才發現,徐雲此時正低着頭,哼哧哼哧的鼓搗着什麽東西:

“肥魚,你這是.?”

“牛頓先生,您來的正好。”

看着面前的小牛,徐雲拿起一個餐盤,笑的很燦爛:

“剛出爐的烤土豆,沾上醬料美味極了。”

“醬料?什麽醬?”

“番茄醬。”

注:

還記得前面介紹餐具時提到的番茄嗎,诶嘿嘿

雪中昨天開播了,有人看了嗎,在猶豫要不要開會員看

(本章完)

追書top10

熊學派的阿斯塔特 |

道詭異仙 |

靈境行者 |

苟在妖武亂世修仙 |

深海餘燼 |

亂世書 |

明克街13号 |

詭秘之主 |

誰讓他修仙的! |

宇宙職業選手

網友top10

苟在妖武亂世修仙 |

苟在高武疊被動 |

全民機車化:無敵從百萬增幅開始 |

我得給這世界上堂課 |

說好制作爛遊戲,泰坦隕落什麽鬼 |

亂世書 |

英靈召喚:隻有我知道的曆史 |

大明國師 |

參加戀綜,這個小鮮肉過分接地氣 |

這爛慫截教待不下去了

搜索top10

宇宙職業選手 |

苟在妖武亂世修仙 |

靈境行者 |

棄妃竟是王炸:偏執王爺傻眼倒追 |

光明壁壘 |

亂世書 |

明克街13号 |

這遊戲也太真實了 |

道詭異仙 |

大明國師

收藏top10

死靈法師隻想種樹 |

乘龍仙婿 |

參加戀綜,這個小鮮肉過分接地氣 |

當不成儒聖我就掀起變革 |

牧者密續 |

我得給這世界上堂課 |

從皇馬踢後腰開始 |

這個文明很強,就是科技樹有點歪 |

熊學派的阿斯塔特 |

重生的我沒有格局

完本top10

深空彼岸 |

終宋 |

我用閑書成聖人 |

術師手冊 |

天啓預報 |

重生大時代之1993 |

不科學禦獸 |

陳醫生,别慫! |

修仙就是這樣子的 |

美漫世界黎明軌迹